Escherichia coli (E. coli) to pospolita bakteria występująca w mikroflorze jelita grubego u ludzi i zwierząt stałocieplnych. W większości to nieszkodliwe bakterie, niektóre jednak powodować mogą poważne zatrucia pokarmowe, zapalenia żołądka, czy jelit. Jest jednak jeden wyjątkowy szczep, który stosuje się do zapobiegania i leczenia wszelkich dolegliwości trawiennych – Escherichia coli Nissle 1917. Bakterie te zostały odkryte ponad 100 lat temu, przez fryburskiego higienistę, prof. dr Alfreda Nissle, który założył we Freiburgu w 1938 r. prywatny instytut badań bakteriologicznych, którym kierował aż do śmierci w 1965 r. Podczas I wojny światowej, w 1917 roku, w pewnej grupie żołnierzy, w szpitalu wojskowym nieopodal Freiburga, wybuchła czerwonka. Tylko jeden żołnierz pozostał zdrowy, nie wykazując żadnych objawów choroby jelit. Widząc to, prof. Nissle przebadał jego kał pod kątem zawartości bakterii jelitowych i wyizolował szczep E. coli, który następnie użył do leczenia pozostałych żołnierzy. Od tego czasu, szczep ten zaczęto nazwać E. coli Nissle 1917, i stosować go w leczeniu różnych zaburzeń żołądkowo-jelitowych. Na Uniwersytecie we Freiburgu, studenci prof. Nissle, podczas zajęć praktycznych z mikrobiologii, mieszali własne próbki kału z czystymi hodowlami patogennych szczepów Salmonelli. Zazwyczaj obserwowali szybki rozrost Salmonelli, wypierających tym samym, inne bakterie jelitowe. Były jednak i takie przypadki, w których rozrost był nieznaczny, a nawet wcale niezauważalny. W ten sposób powstała hipoteza, że mikroflora niektórych próbek kału zawiera takie szczepy, które hamują rozwój mikroorganizmów patogennych. Później podejrzenia te zostały potwierdzone w laboratorium, w trakcie badań hodowli mieszanin szczepów Salmonella z różnymi izolatami E. coli, uzyskanymi z próbek kału zdrowych ludzi. Okazało się, że patogenne szczepy E. coli posiadają dodatkowe geny, tzw. „geny zjadliwości”, które czynią je chorobotwórczymi. Escherichia coli Nissle 1917 natomiast, wyróżnia się na tle innych bakterii ze swojej rodziny, tym, że na drodze ewolucji, poprzez poziomy transfer genów z innych bakterii jelitowych, nabyła dodatkowe elementy genetyczne, nazywane „Wyspami Genomowymi”. To one są odpowiedzialne m. in. za zdolność hamowania rozwoju różnego rodzaju enteropatogenów. Tę szczególną właściwość, prof. Nissle nazwał „aktywnością antagonistyczną”. Niepatogenny szczep bakterii Escherichia coli wykazuje wiele korzystnych właściwości, pełni istotne funkcje w ludzkim organizmie. Odpowiedzialny jest za rozkład produktów spożywczych, bierze udział w produkcji witamin z grupy B i K, poprawia wchłanianie żelaza. Jest bakterią tlenową, więc po przez zużycie tlenu obecnego w jelitach przyczynia się do wytworzenia pozytywnego środowiska dla anaerobów – bakterii beztlenowych. Wspomaga proces zasiedlania innych bakterii probiotycznych jednocześnie usuwając patogeny z mikroflory jelit. Szczep E-coli Nissle 1917 posiada właściwości probiotyczne oraz adhezyjne – przyczepia się do ścian jelitowych uszczelniając je i wpływając aprobująco na wchłanianie organizmu. Szczep Escherichia coli Nissle 1917 sprzyja tworzeniu substancji przeciwzapalnych i autogennych antybiotyków oraz wpływa pozytywnie na system immunologiczny. Niepatogenna E-coli sprawdza się w leczeniu wrzodziejącego zapalenia jelita grubego, zespołu jelita drażliwego, w walce z alergiami pokarmowymi, a także wykazuje korzystne działanie w profilaktyce raka jelita grubego. Niedobór tej bakterii w organizmie przynieść może przykre skutki w postaci częstego występowania nawracających infekcji moczowo-płciowych, czy oddechowych, a to wszystko za sprawą obniżonej odporności śluzówek. Niestety, wraz z pojawieniem się antybiotyków, zgasło zainteresowanie mikroflorą jelitową i terapeutycznym zastosowaniem żywych bakterii. Dopiero niedawno, medyczne osiągnięcia i rozwój mikrobiologii, spowodowały, że wcześniejsze doświadczenia mogły zostać dokładnie potwierdzone, a leczenie probiotykami znalazło się na powrót w centrum zainteresowania lekarzy i naukowców. Obecnie jest to prawdopodobnie najintensywniej badany szczep bakteryjny.
Ulcerative colitis (UC) is a chronic inflammatory disease, whose etiology is still unclear. Its pathogenesis involves an interaction between genetic factors, immune response and the “forgotten organ”, Gut Microbiota. Several studies have The probiotic Escherichia coli strain Nissle 1917 interferes with invasion of human intestinal epithelial cells by different enteroinvasive bacterial pathogens Artur Altenhoefer et al. FEMS Immunol Med Microbiol. 2004. Free article Abstract The probiotic Escherichia coli strain Nissle 1917 (Mutaflor) of serotype O6:K5:H1 was reported to protect gnotobiotic piglets from infection with Salmonella enterica serovar Typhimurium. An important virulence property of Salmonella is invasion of host epithelial cells. Therefore, we tested for interference of E. coli strain Nissle 1917 with Salmonella invasion of INT407 cells. Simultaneous administration of E. coli strain Nissle 1917 and Salmonella resulted in up to 70% reduction of Salmonella invasion efficiency. Furthermore, invasion of Yersinia enterocolitica, Shigella flexneri, Legionella pneumophila and even of Listeria monocytogenes were inhibited by the probiotic E. coli strain Nissle 1917 without affecting the viability of the invasive bacteria. The observed inhibition of invasion was not due to the production of microcins by the Nissle 1917 strain because its isogenic microcin-negative mutant SK22D was as effective as the parent strain. Reduced invasion rates were also achieved if strain Nissle 1917 was separated from the invasive bacteria as well as from the INT407 monolayer by a membrane non-permeable for bacteria. We conclude E. coli Nissle 1917 to interfere with bacterial invasion of INT407 cells via a secreted component and not relying on direct physical contact with either the invasive bacteria or the epithelial cells. Similar articles Detection and distribution of probiotic Escherichia coli Nissle 1917 clones in swine herds in Germany. Kleta S, Steinrück H, Breves G, Duncker S, Laturnus C, Wieler LH, Schierack P. Kleta S, et al. J Appl Microbiol. 2006 Dec;101(6):1357-66. doi: J Appl Microbiol. 2006. PMID: 17105567 E. coli Nissle 1917 Affects Salmonella adhesion to porcine intestinal epithelial cells. Schierack P, Kleta S, Tedin K, Babila JT, Oswald S, Oelschlaeger TA, Hiemann R, Paetzold S, Wieler LH. Schierack P, et al. PLoS One. 2011 Feb 17;6(2):e14712. doi: PLoS One. 2011. PMID: 21379575 Free PMC article. Nonpathogenic Escherichia coli strain Nissle 1917 inhibits signal transduction in intestinal epithelial cells. Kamada N, Maeda K, Inoue N, Hisamatsu T, Okamoto S, Hong KS, Yamada T, Watanabe N, Tsuchimoto K, Ogata H, Hibi T. Kamada N, et al. Infect Immun. 2008 Jan;76(1):214-20. doi: Epub 2007 Oct 29. Infect Immun. 2008. PMID: 17967864 Free PMC article. Tumor-specific colonization, tissue distribution, and gene induction by probiotic Escherichia coli Nissle 1917 in live mice. Stritzker J, Weibel S, Hill PJ, Oelschlaeger TA, Goebel W, Szalay AA. Stritzker J, et al. Int J Med Microbiol. 2007 Jun;297(3):151-62. doi: Epub 2007 Apr 19. Int J Med Microbiol. 2007. PMID: 17448724 Effect of probiotic strains on interleukin 8 production by HT29/19A cells. Lammers KM, Helwig U, Swennen E, Rizzello F, Venturi A, Caramelli E, Kamm MA, Brigidi P, Gionchetti P, Campieri M. Lammers KM, et al. Am J Gastroenterol. 2002 May;97(5):1182-6. doi: Am J Gastroenterol. 2002. PMID: 12014725 Cited by The potential utility of fecal (or intestinal) microbiota transplantation in controlling infectious diseases. Ghani R, Mullish BH, Roberts LA, Davies FJ, Marchesi JR. Ghani R, et al. Gut Microbes. 2022 Jan-Dec;14(1):2038856. doi: Gut Microbes. 2022. PMID: 35230889 Free PMC article. Review. The microbial ecology of Escherichia coli in the vertebrate gut. Foster-Nyarko E, Pallen MJ. Foster-Nyarko E, et al. FEMS Microbiol Rev. 2022 May 6;46(3):fuac008. doi: FEMS Microbiol Rev. 2022. PMID: 35134909 Free PMC article. Review. Quantifying cumulative phenotypic and genomic evidence for procedural generation of metabolic network reconstructions. Moutinho TJ Jr, Neubert BC, Jenior ML, Papin JA. Moutinho TJ Jr, et al. PLoS Comput Biol. 2022 Feb 7;18(2):e1009341. doi: eCollection 2022 Feb. PLoS Comput Biol. 2022. PMID: 35130271 Free PMC article. Efficient markerless integration of genes in the chromosome of probiotic E. coli Nissle 1917 by bacterial conjugation. Seco EM, Fernández LÁ. Seco EM, et al. Microb Biotechnol. 2022 May;15(5):1374-1391. doi: Epub 2021 Nov 9. Microb Biotechnol. 2022. PMID: 34755474 Free PMC article. Escherichia coli Nissle 1917 secondary metabolism: aryl polyene biosynthesis and phosphopantetheinyl transferase crosstalk. Jones CV, Jarboe BG, Majer HM, Ma AT, Beld J. Jones CV, et al. Appl Microbiol Biotechnol. 2021 Oct;105(20):7785-7799. doi: Epub 2021 Sep 21. Appl Microbiol Biotechnol. 2021. PMID: 34546406 Publication types MeSH terms Substances LinkOut - more resources Full Text Sources Wiley Other Literature Sources The Lens - Patent Citations Research Materials NCI CPTC Antibody Characterization Program Recently, we have found that hBD-2 induction by probiotic Escherichia coli Nissle 1917 was mediated through NF-κB- and AP-1-dependent pathways. The aim of the present study was to identify the responsible bacterial factor. E. coli Nissle 1917 culture supernatant was found to be more potent than the pellet, indicating a soluble or shed factor. Skip Nav Destination Imaging, Diagnosis, Prognosis| April 15 2008 Peter Brader; 1Department of Radiology, Search for other works by this author on: Jochen Stritzker; 6Genelux Corporation, San Diego Science Center, San Diego, California; and 7Institute for Biochemistry, Biocenter; Institute for Molecular Infectious Biology; and Search for other works by this author on: Pat Zanzonico; 2Department of Medical Physics, Search for other works by this author on: Shangde Cai; 3Cyclotron and Radiochemistry Core Facility, Search for other works by this author on: Eva M. Burnazi; 3Cyclotron and Radiochemistry Core Facility, Search for other works by this author on: Hedvig Hricak; 1Department of Radiology, Search for other works by this author on: Aladar A. Szalay; 6Genelux Corporation, San Diego Science Center, San Diego, California; and 7Institute for Biochemistry, Biocenter; Institute for Molecular Infectious Biology; and 8Virchow Center for Biomedical Research, School of Medicine, University of Wuerzburg, Wuerzburg, Germany Search for other works by this author on: Yuman Fong; 5Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York; Search for other works by this author on: Ronald Blasberg 1Department of Radiology, 4Nuclear Pharmacy, and Search for other works by this author on: Requests for reprints: Ronald G. Blasberg, Departments of Neurology and Radiology, MH (Box 52), Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10021. Phone: 646-888-2211; Fax: 646-422-0408; E-mail: blasberg@ Received: September 14 2007 Revision Received: December 03 2007 Accepted: December 04 2007 Online Issn: 1557-3265 Print Issn: 1078-0432 American Association for Cancer Research2008 Clin Cancer Res (2008) 14 (8): 2295–2302. Article history Received: September 14 2007 Revision Received: December 03 2007 Accepted: December 04 2007 Split-Screen Views Icon Views Article contents Figures & tables Video Audio Supplementary Data Peer Review PDF Tools Icon Tools Search Site Article Versions Icon Versions Version of Record April 15 2008 Proof March 27 2008 Citation Peter Brader, Jochen Stritzker, Christopher C. Riedl, Pat Zanzonico, Shangde Cai, Eva M. Burnazi, Ghani, Hedvig Hricak, Aladar A. Szalay, Yuman Fong, Ronald Blasberg; Escherichia coli Nissle 1917 Facilitates Tumor Detection by Positron Emission Tomography and Optical Imaging. Clin Cancer Res 15 April 2008; 14 (8): 2295–2302. Download citation file: Ris (Zotero) Reference Manager EasyBib Bookends Mendeley Papers EndNote RefWorks BibTex Abstract Purpose: Bacteria-based tumor-targeted therapy is a modality of growing interest in anticancer strategies. Imaging bacteria specifically targeting and replicating within tumors using radiotracer techniques and optical imaging can provide confirmation of successful colonization of malignant Design: The uptake of radiolabeled pyrimidine nucleoside analogues and [18F]FDG by Escherichia coli Nissle 1917 (EcN) was assessed both in vitro and in vivo. The targeting of EcN to 4T1 breast tumors was monitored by positron emission tomography (PET) and optical imaging. The accumulation of radiotracer in the tumors was correlated with the number of bacteria. Optical imaging based on bioluminescence was done using EcN bacteria that encode luciferase genes under the control of an l-arabinose–inducible PBAD promoter We showed that EcN can be detected using radiolabeled pyrimidine nucleoside analogues, [18F]FDG and PET. Importantly, this imaging paradigm does not require transformation of the bacterium with a reporter gene. Imaging with [18F]FDG provided lower contrast than [18F]FEAU due to high FDG accumulation in control (nontreated) tumors and surrounding tissues. A linear correlation was shown between the number of viable bacteria in tumors and the accumulation of [18F]FEAU, but not [18F]FDG. The presence of EcN was also confirmed by bioluminescence can be imaged by PET, based on the expression of endogenous E. coli thymidine kinase, and this imaging paradigm could be translated to patient studies for the detection of solid tumors. Bioluminescence imaging provides a low-cost alternative to PET imaging in small animals. In recent years, successful targeting of viruses and bacteria to solid tumors has been shown (1, 2) and such oncolytic therapy is receiving renewed interest. Tumor-targeting bacteria have been studied and they showed preferential accumulation in tumors compared with normal organs; studies have included the use of Bifidobacterium spp. (3), Listeria monocytogenes (1, 4), Clostridium spp. (5), Salmonella spp. (6–8), Shigella flexneri (6), Vibrio cholerae (2), and Escherichia coli (6). A number of different oncolytic viruses have already entered into clinical trials and adenovirus H101 has been approved in China for the treatment of head and neck cancer (8). However, only a single phase I human clinical trial using bacteria, Salmonella VNP20009, has been initiated (7). In this trial, a lower percentage of tumor-targeting efficacy was observed compared with the previously investigated rodent models in which tumor-colonization was high (7). The authors stated that this discrepancy could be the result of inadequate sampling that was inherent in their use of fine-needle biopsies. In an excisional biopsy done on one patient, bacteria were found to colonize the tumor, whereas a previous needle biopsy of the same tumor did not detect the microorganisms. Currently, biopsy is the only clinical method available for determining the presence of bacteria. Future clinical studies will require the ability to accurately detect the presence of bacteria in tumors (and also in other organs and tissues) without excision of the respective tissue. To address this issue, noninvasive imaging of bacteria-colonized tumors has several advantages compared with biopsy. In contrast to biopsies, imaging can be done repeatedly, provides a much wider assessment of the entire tumor as well as other tissues and body organs ( minimizes sampling errors), and can provide both a spatial and time dimension from sequential tomographic images. Different imaging modalities [positron emission tomography (PET), single-photon emission computed tomographyy, and optical imaging] in combination with reporter genes have been used to visualize the distribution of microorganisms and to confirm their presence within experimental tumors. Most studies on bacterial tumor colonization in tumor-bearing mice have used luciferase and/or fluorescence (green fluorescent protein) imaging for bacterial detection (2, 4, 6, 9). However, current optical imaging modalities using fluorescent proteins or luciferases are restricted to small animals and cannot be readily translated to patient studies. Therefore, radiotracer or magnetic resonance imaging techniques need to be used to track bacteria in human subjects. The best known and most widely used radiotracer for PET imaging is fluorine-18 (18F)–labeled fluorodeoxyglucose ([18F]FDG), which is accumulated by metabolically active cells. On entry into the cell, [18F]FDG is phosphorylated by hexokinase; the phosphorylated FDG can neither exit the cell nor be further metabolized and is therefore trapped within the cell in relation to the level of glycolytic activity. FDG uptake in many malignant tumors is high because glucose metabolism in the tumors is high. In addition, any inflammatory processes associated with the tumor contribute to the high FDG uptake because granulocytes and macrophages also have high rates of glucose metabolism (10). Although tumor tissue targeted by bacteria is likely to have high levels of FDG accumulation, baseline (before bacterial administration) is also likely to be high, and the difference between baseline and tumor-targeted FDG uptake may be difficult to image and quantitate. Another powerful imaging strategy is the use of reporter genes in to identify the location and number of tissue-targeted bacteria. Among the PET-based reporter genes, herpes simplex virus 1 thymidine kinase (HSV1-TK) has been used most extensively. The expression of HSV1-TK can be imaged and monitored using specific radiolabeled substrates that are selectively phosphorylated by HSV1-TK and trapped within transfected cells. [18F]-2′-Fluoro-2′deoxy-1β-d-arabionofuranosyl-5-ethyl-uracil ([18F]FEAU) and [124I]-2′-fluoro-1-β-d-arabino-furanosyl-5-iodo-uracil ([124I]FIAU) are radiopharmaceuticals for imaging HSV1-TK gene expression (11) and are used widely by many investigators (12–15). HSV1-TK–expressing Salmonella VNP20009 have recently been shown to localize in tumors, including C-38 colon carcinoma and B16-F10 murine melanoma, and were successfully imaged with [124I]FIAU and PET (16). In contrast to using an exogenous reporter gene such as HSV1-TK, we investigated the feasibility of using the endogenous thymidine kinase of probiotic E. coli Nissle 1917 (EcN) to phosphorylate [18F]FEAU and [124I]FIAU for noninvasive PET imaging of EcN-colonized tumors. We show that the uptake of [18F]FEAU by the tumors is dependent on the presence of EcN and that the magnitude of radioactivity accumulation correlates with the number of bacteria that colonize the tumor. We also compared [18F]FEAU and [124I]FIAU images to those obtained with [18F]FDG. Bioluminescence images of EcN were also obtained and the optical signal shown to colocalize with the [124I]FIAU activity distribution in the same animals, showing the feasibility of using EcN for identifying tumors by both bioluminescence and PET imaging in small animals. Materials and Methods Cell culture and animal experiments The murine mammary carcinoma cell line 4T1 (ATCC CRL-2539) was cultured in RPMI containing 10% FCS. The cells were maintained at 37°C with 5% CO2 in air, and subcultured twice weekly. For tumor cell implantation, 6- to 8-wk-old athymic nu/nu mice (National Cancer Institute) were used, housed five per cage, and allowed food and water ad libitum in the Memorial Sloan Kettering Cancer Center facility for 1 wk before tumor cell implantation. The 4T1 cells were removed by trypsinization, washed in PBS, and × 104 cells (resuspended in 50-μL PBS) were implanted into the right and left shoulders. Two weeks postimplantation (tumor diameter >5 mm), bacteria were administered systemically by tail vein injection. Animal studies were done in compliance with all applicable policies, procedures, and regulatory requirements of the Institutional Animal Care and Use Committee, the Research Animal Resource Center of Memorial Sloan Kettering Cancer Center, and the NIH Guide for the Care and Use of Laboratory Animals. All animal procedures were done by inhalation of 2% isofluorane. After the studies, all animals were sacrificed by CO2 inhalation. Bacteria E. coli Nissle 1917 (EcN), a probiotic, non–protein-toxin-expressing strain, was used to specifically colonize tumors and harbored a pBR322DEST PBAD-DUAL-term, a luxABCDE-encoding plasmid that enables the bacteria to be detected with bioluminescence imaging when induced with l-arabinose (6). The light is emitted from the bacteria as a result of a heterodimeric luciferase (encoded by luxAB) catalyzing the oxidation of reduced flavin mononucleotide and a long-chain fatty aldehyde (synthesized by a fatty acid reductase complex encoded by luxCDE; ref. 17). For injection, bacteria were grown in LB broth supplemented with 100 μg/mL ampicillin until reaching an absorbance at 600 nm (A600 nm) of [corresponding to 2 × 108 colony-forming units (CFU)/mL] and washed twice in PBS. The suspension was then diluted to 4 × 107 CFU/mL and 100 μL were injected into the lateral tail vein of tumor-bearing mice. Vehicle control mice were injected with 100-μL PBS via tail vein. Radiopharmaceuticals [18F]FEAU was synthesized by coupling the radiolabeled fluoro sugar with the silylated pyrimidine derivatives following a procedure previously reported by Serganova et al. (12). The specific activity of the product was ∼37 GBq/μmol (∼1 Ci/μmol); radiochemical purity was >95% following purification by high-pressure liquid chromatography. [124I]FIAU was synthesized by reacting the precursor of 5-trimethylstannyl-1-(2-deoxy-2-fluoro-β-d-arabinofuranosyl)uracil (FTAU) with carrier-free [124I]NaI. I-124 was produced on the Memorial Sloan-Kettering Ebco cyclotron using the 124Te(p,n) 124I nuclear reaction on an enriched 124TeO2/Al2O3 solid target. Radiosynthesis was done as previously described (13, 14) with minor modifications. The specific activity of the product was >1,000 GBq/μmol (>27 Ci/μmol); radiochemical purity was >95% and was determined by radio TLC (Rf using silica gel plates and a mobile phase of ethyl acetate/acetone/water (14:8:1, v/v/v). [18F]FDG (clinical grade) was obtained from IBA Molecular with a specific activity >41 MBq/μmol (>11 mCi/μmol) and a radiochemical purity of 99% by TLC and 98% by high-pressure liquid chromatography. In vitro uptake of [18F]FDG and [18F]FEAU An overnight culture of EcN was diluted 1:50 into 5-mL fresh LB broth containing either MBq (25 μCi) of [18F]FDG or [18F]FEAU and grown at 37°C for 4 h. The bacteria were then harvested by centrifugation, washed twice with PBS, and the radioactivity in the pelleted bacteria and medium was measured in a gamma counter (Packard, United Technologies). MicroPET imaging FDG. In the first group of six animals, each animal was injected via the tail vein with MBq (250 μCi) of [18F]FDG before and 16 or 72 h after administration of EcN. [18F]FDG PET scanning was done 1 h after tracer administration using a 10-min list mode acquisition. Animals were fasted 12 h before tracer administration and kept under anesthesia between FDG injection and imaging. FEAU. In the second group of 24 animals, three subgroups of eight animals each were studied; each animal was injected via tail vein with MBq (250 μCi) of [18F]FEAU. Subgroup 1 (control) was not injected with bacteria (they received 100-μL PBS); subgroups 2 and 3 were injected with EcN-bacteria 16 and 72 h before [18F]FEAU administration. [18F]FEAU PET scanning was done 2 h after tracer administration using a 10-min list mode acquisition. FIAU. In a third set of six mice, three were injected with EcN-bacteria and three with PBS (control). [124I]FIAU [37 MBq (1 mCi)] was injected in each animal 72 h after bacterial injection. Potassium iodide was used to block the uptake of radioactive iodine by the thyroid. [124I]FIAU PET was obtained 4, 8, 12, 24, 48, and 72 h after tracer administration with 10-min list acquisition at the 4- and 8-h imaging time points, 15 min at the 12-h time point, 30 min at 24 h, and 60 min at the 48- and 72-h time points. After tracer administration and between imaging time points, the animals were allowed to wake up and maintain normal husbandry. Imaging was done using a Focus 120 microPET dedicated small-animal PET scanner (Concorde Microsystems, Inc.). Mice were maintained under 2% isofluorane anesthesia with an oxygen flow rate of 2 L/min during the entire scanning period. Three-dimensional list mode data were acquired using an energy window of 350 to 700 keV for 18F and 410 to 580 keV for 124I and a coincidence timing window of 6 ns. These data were then sorted into two-dimensional histograms by Fourier rebinning using a span of 3 and a maximum ring difference of 47. Transverse images were reconstructed by filtered back-projection using a ramp filter with a cutoff frequency equal to the Nyquist frequency in a 128 × 128 × 94 matrix composed of × × voxels. The image data were corrected for (a) nonuniformity of scanner response using a uniform cylinder source-based normalization, (b) dead time count losses using a singles count rate–based global correction, (c) physical decay to the time of injection, and (d) the 124I branching ratio. There was no correction applied for attenuation, scatter, or partial-volume averaging. The count rates in the reconstructed images were converted to activity concentration [percent of injected dose per gram of tissue (%ID/g)] using a system calibration factor (μCi/mL/cps/voxel) derived from imaging of a rat-size phantom filled with a uniform aqueous solution of 18F. PET image analysis was done using ASIPro software (Concorde Microsystems, Inc.). For each PET scan, regions of interest were manually drawn over tumor, liver, skeletal muscle, and heart. For each tissue and time point postinjection, the measured radioactivity was expressed as %ID/g. The maximum pixel value was recorded for each tissue and tumor-to-organ ratios for liver, skeletal muscle, and heart were then plotted versus time. Bacterial and radioactivity quantification of tissue samples Euthanized mice were rinsed with 100% ethanol before tissue removal. Organs such as liver, lung, spleen, and heart were sampled and weighed before radioactivity measurements. Tumor tissue was weighed and homogenized in 1-mL PBS. Serial dilutions of the homogenized sample were plated on l-arabinose–containing LB agar plates and growing colonies were counted and confirmed to be EcN harboring a pBR322DEST PBAD-DUAL-term by bioluminescence imaging using an IVIS 100 Imaging system (Caliper). The remaining tumor suspension was assayed for radioactivity in a gamma counter (Packard, United Technologies); [18F]FEAU radioactivity (%ID/g) in the samples was determined and tumor-to-organ ratios were calculated. To assess the correlation between radioactivity and scintillation counter measurements, the Pearson correlation coefficient was computed. In vivo optical imaging of bioluminescence The same animals were imaged for localization of bioluminescence after the 72-h [124I]FIAU PET scans. Each animal was injected with 200-μL l-arabinose (25% w/v) to induce transcriptional expression of the luciferase reporter for bioluminescence imaging. Images were acquired for 60 s, 4 h after l-arabinose injection, using an IVIS 100 Imaging System (Caliper). The photon emissions (photons/cm2/s/steradian) from the animals and cell samples were analyzed using the LIVINGIMAGE software (Caliper). Statistics A two-tailed unpaired t test was applied to determine the significance of differences between values using the MS Office 2003 Excel statistical package (Microsoft). Results In vitro [18F]FDG and [18F]FEAU uptake into EcN. The in vitro uptakes of [18F]FDG and of [18F]FEAU by the tumor-colonizing strain E. coli Nissle 1917 were compared. There was a 120-fold higher concentration of [18F]FDG and a higher concentration of [18F]FEAU activity in EcN-bacteria compared with that in the LB broth, suggesting that [18F]FDG would be a better imaging agent than [18F]FEAU. Distribution of EcN in tumor-bearing mice. Following EcN injection into the tail vein of 4T1 tumor–bearing mice, most bacteria (>99%) are quickly cleared from the animals and only a small percentage of the administered bacteria colonize the tumor (6). These tumor-colonizing bacteria started to grow exponentially for ∼24 hours before reaching a plateau of ∼1 × 109 CFU/g of tumor tissues. During the growth phase, the bacteria are metabolically active and rapidly proliferate. For our studies, we elected to use tumor-bearing mice that were injected with EcN at 16 hours (lower CFU per gram but in rapid growth phase) and at 72 hours (higher numbers of bacteria in a slower phase) before administration of [18F]FDG or [18F]FEAU. The number of bacteria per gram of tumor tissue at 16 and 72 hours postinjection is shown in (Fig. 1). Fig. colonization of EcN at 16 and 72 h after bacterial injection. Columns, mean of eight analyzed tumors; bars, colonization of EcN at 16 and 72 h after bacterial injection. Columns, mean of eight analyzed tumors; bars, SD. Close modal In vivo PET imaging of EcN colonized tumors. [18F]FDG PET imaging was done before and at 16 and 72 hours after tail vein injection of EcN in the same animals (Fig. 2A). The [18F]FDG tumor-to-organ ratios (mean ± SD) before injection of EcN bacteria were high in liver ( ± and muscle ( ± and low in heart ( ± At 16 hours after EcN injection, tumor-to-organ ratios were significantly increased for liver, muscle, and heart ( ± ± and ± respectively). At 72 hours after EcN injection, the tumor-to-organ ratios were lower for the same tissues ( ± ± and ± respectively). This represents a ∼ enhancement at 16 hours (P 5 in the EcN-treated animals (Fig. 5B). However, the control (non–EcN-treated) animals also show some [124I]FIAU retention in the 4T1 xenografts. This reduces the specificity of the radioactivity measured in the EcN-treated tumors and results in only a enrichment of [124I]FIAU in the bacteria-treated tumors (Fig. 5B). Fig. axial and coronal views of [124I]FIAU microPET images of representative EcN-treated and nontreated (control) 4T1 xenograft–bearing animals at different times (12, 24, 48, and 72 h; X-axis) after tracer injection. B, [124I]FIAU uptake of tumors compared with background as calculated from region of interest measurements; six tumors in each group (FIAU uptake ratio; left Y-axis). Data from the EcN colonized group are shown in green and the control group in blue. The mean tumor uptake ratios in EcN colonized animals normalized to the mean values obtained for the control animals are indicated in red (relative FIAU uptake; right Y-axis). C, bioluminescence images of the same animals in A 4 h after injection of l-arabinose; l-arabinose induces the expression of luciferase genes in EcN × pBR322DEST PBAD-DUAL-term bacteria. Tumors are axial and coronal views of [124I]FIAU microPET images of representative EcN-treated and nontreated (control) 4T1 xenograft–bearing animals at different times (12, 24, 48, and 72 h; X-axis) after tracer injection. B, [124I]FIAU uptake of tumors compared with background as calculated from region of interest measurements; six tumors in each group (FIAU uptake ratio; left Y-axis). Data from the EcN colonized group are shown in green and the control group in blue. The mean tumor uptake ratios in EcN colonized animals normalized to the mean values obtained for the control animals are indicated in red (relative FIAU uptake; right Y-axis). C, bioluminescence images of the same animals in A 4 h after injection of l-arabinose; l-arabinose induces the expression of luciferase genes in EcN × pBR322DEST PBAD-DUAL-term bacteria. Tumors are encircled. Close modal Colocalization of bioluminescence and [124I]FIAU uptake. To further verify that the increased [124I]FIAU PET signal reflected bacterial localization in 4T1 xenografts, we took advantage of the l-arabinose–inducible luciferase reporter plasmid pBR322DEST PBAD-DUAL-term (6). l-Arabinose was injected into each mouse following [124I]FIAU PET imaging, and bioluminescence imaging was done 4 hours later when the expression of luciferase is at its maximum (6). The l-arabinose–induced bioluminescence signal was readily detected at the site of the 4T1 xenografts (Fig. 5C). Control tumors did not show any such signal. The bioluminescence images of EcN-treated mice also indicated no bacterial presence in other tissues of mice. Discussion EcN is one of the best studied probiotic bacterial strains and it has been successfully used in humans as an oral treatment for a number of intestinal disorders ( diarrhea, inflammatory bowel diseases, and ulcerative colitis) for more than 90 years (18, 19). Although the genome of EcN shows high similarity to the uropathogenic E. coli CFTR073 (20), the probiotic strain lacks any known protein toxins or mannose-resistant hemagglutinating adhesins (21). Furthermore, EcN was not found to colonize any organs other than tumor when administered systemically to tumor-bearing mice (6). Thus, EcN seems to be a good candidate for human application, although it still produces lipopolysaccharide (endotoxin), which could result in adverse effects. Because deletion of genes responsible for lipopolysaccharide biosynthesis ( msbB) has been shown to be successful for Salmonella typhimurium, a similar strategy could be adopted with EcN to insure its clinical safety. A noninvasive, clinically applicable method for imaging bacteria in target tissue or specific organs of the body would be of considerable value for monitoring and evaluating bacterial-based therapy in human subjects. This imaging system could also be used for monitoring the targeting and proliferation of the bacterial vector, such as EcN, to identify sites of occult tumor and to identify sites of bacterial proliferation in occult infectious disease. EcN imaging provides the following benefits: Following systemic administration of the bacteria, imaging can (a) confirm successful targeting to known tumor sites, (b) potentially identify additional sites of tumor metastases, and (a) assess whether the number (concentration) of EcN in tumor tissue is adequate to deliver a sufficient dose of a “therapeutic gene.” In our study, we assessed the feasibility of detecting EcN-colonized tumors with [18F]FDG, [18F]FEAU, and [124I]FIAU PET imaging. We showed that EcN accumulate and trap radiolabeled [18F]FDG, [18F]FEAU, and [124I]FIAU using endogenous enzyme systems ( bacterial hexokinase and thymidine kinase). It was previously shown that tumor targeting of HSV1-TK–transformed Salmonella VNP20009 could be successfully imaged with [124I]FIAU and that [124I]FIAU accumulation was HSV1-TK dependent (16). Here, the expression of the endogenous bacterial thymidine kinase of EcN and phosphorylation of [18F]FEAU and [124I]FIAU are sufficient to result in selective accumulation of these radiotracers in tissue colonized by EcN. In contrast to the marked structural specificity of mammalian thymidine kinase for thymidine alone (resulting in little or no phosphorylation of thymidine analogues), the thymidine kinase of bacteria has been shown by Bettegowda et al. (5) to be less specific for thymidine than the mammalian enzyme. Bacterial as well as viral thymidine kinase will phosphorylate thymidine analogues such as FIAU and FEAU. This study opens up new possibilities for future investigations and for the use of alternative pyrimidine nucleoside derivatives such as FEAU that can be selectively phosphorylated by endogenous bacterial thymidine kinase ( E. coli, Salmonella, or Clostridium). The tumor-selective replication of EcN in live animals allowed us to distinguish tumors from other tissues by PET imaging following administration of radiolabeled [18F]FEAU or [124I]FIAU. By using tumors in different stages of bacterial colonization ( 16 and 72 hours after bacterial administration), we showed a linear relationship between the number of viable bacteria in tumor tissue and the uptake of radiolabeled [18F]FEAU. This result is similar to that found with HSV1-TK–transformed Salmonella VNP20009 and [124I]FIAU accumulation (16). Comparing the Salmonella VNP20009 and EcN data shows that the HSV1-TK–transformed Salmonella accumulate more radiopharmaceutical per viable bacteria than EcN bacteria over the dose ranges that were studied (Fig. 4B). These results, for several reasons, are not unexpected and indicate that there is a role for reporter-transformed bacteria when higher imaging sensitivity is required: In addition to the genomic thymidine kinase gene of Salmonella VNP20009, HSV1-TK was present in multiple copies under control of a constitutive promoter. In contrast, only the genomic copy of the EcN thymidine kinase gene under control of its own promoter was present in EcN bacteria. Therefore, higher expression of thymidine kinase is achieved in VNP20009 Salmonella. Furthermore, [124I]FIAU and [18F]FEAU were developed to specifically image HSV1-TK, and not mammalian TK1, to achieve low background activity, and these tracer substrates may not be an ideal substrate for bacterial thymidine kinases (5). There was no correlation between the level of [18F]FDG uptake and number of viable bacteria in the tumors, and the signal-to-background ratio was not as high with [18F]FDG as with [18F]FEAU and [124I]FIAU. This clearly reflects the high baseline uptake (%ID/g) of [18F]FDG by the tumor compared with that of [18F]FEAU and [124I]FIAU. However, [18F]FDG imaging in combination with EcN (or other bacteria) might show better results in tumors with a low baseline level of [18F]FDG uptake. The absence of a correlation between number of viable bacteria and [18F]FDG uptake might also be due to the presence of necrosis induced by the bacteria or to the presence of glucose-metabolizing macrophages in the tumors (6). For example, on day 1 after bacterial injection, a high number of metabolically active bacteria were present and only very small patches of necrosis were observed. Two days later, the number of bacteria increases, but the number of living cells in the tumor decreases dramatically because the necrotic region takes up 30% to 50% of the tumor volume (6). It should also be noted that 4T1 xenografts in the absence of bacteria accumulate [124I]FIAU to low levels above background (48-and 72-hour images in Fig. 5B) in comparison with the near-background levels of [18F]FEAU accumulation (Fig. 2D) in non–bacteria-treated animals. This is consistent with similar observations in other tumor systems (12–14, 22, 23). Thus, [18F]FEAU may be a better bacterial-imaging probe than [124I]FIAU. The current study showed the feasibility of noninvasive imaging of bacteria based on the expression of genomic bacterial thymidine kinase. The potential for monitoring patients that have received tumor-colonizing bacteria without the inclusion of an exogenous ( viral) reporter gene has previously been shown (5) and is confirmed here. Imaging should be able to determine whether bacterial tumor colonization has occurred successfully and whether previously undetected metastases or specific organs are colonized by the bacteria. We have shown that the level of radioactivity can also be taken as an indicator of the number of bacteria that are present in the target tissue and whether therapeutic effects ( by administration of prodrugs or induction of toxic genes) can be expected. In addition, the presence of pathogenic bacteria in localized infections may also be identifiable, and it may also be possible to differentiate bacterial infections from nonmicrobial inflammations by [18F]FEAU or [124I]FIAU PET imaging. In conclusion, the results of our study indicate that EcN (or other bacteria expressing endogenous thymidine kinase) can be imaged with pyrimidine nucleoside analogues that are selectively phosphorylated and trapped in the bacteria. The advantage of using EcN over many other bacteria is their probiotic character. It is therefore a relatively safe “imageable vector” that could also include genes conferring therapeutic potential. We show that the PET images for EcN-colonized tumors were better ( resulted in higher signal-to-background ratios) with [18F]FEAU than with [18F]FDG, and this was mainly due to the low baseline (pre-bacterial) activity in the tumors and surrounding tissue. Most importantly, a linear relationship between the number of viable bacteria and level of [18F]FEAU activity in the xenografts was found, an essential component of the imaging paradigm. Other pyrimidine nucleoside analogues that have been developed for PET imaging of HSV1-TK, such as [124I]FIAU and [18F]FHBG, could also be further evaluated for noninvasive monitoring of bacterial tumor colonization because both positron-emitting radiopharmaceuticals have already been successfully administered to patients in gene imaging studies (15, 23–26). Grant support: NIH grants R25-CA096945 and P50 CA86438, Department of Energy grant FG03-86ER60407, R&D Division of Genelux Corporation San Diego, and a Service contract awarded to the University of Würzburg, Germany ( Szalay). Technical services were provided by the Memorial Sloan Kettering Cancer Center Small-Animal Imaging Core Facility, supported in part by NIH Small-Animal Imaging Research Program grant R24 CA83084 and NIH Center grant P30 CA08748. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 Section 1734 solely to indicate this fact. Note: P. Brader and J. Stritzker contributed equally to this work. Acknowledgments We thank Dr. Steven Larson (Memorial Sloan Kettering Cancer Center, New York, NY) for his help and support. References 1Liu TC, Kirn D. Systemic efficacy with oncolytic virus therapeutics: clinical proof-of-concept and future directions. Cancer Res 2007;67:429– YA, Shabahang S, Timiryasova TM, et al. Visualization of tumors and metastases in live animals with bacteria and vaccinia virus encoding light-emitting proteins. Nat Biotechnol 2004;22:313– NT, Taniguchi S, Aoki K, Baba T. Selective localization and growth of Bifidobacterium bifidum in mouse tumors following intravenous administration. Cancer Res 1980;40:2061– CU, Monk IR, Casey PG, et al. An improved luciferase tagging system for Listeria monocytogenes allows real-time monitoring in vivo and in vitro. Appl Environ Microbiol 2007;73:3091– C, Foss CA, Cheong I, et al. Imaging bacterial infections with radiolabeled 1-(2′-deoxy-2′-fluoro-β-d-arabinofuranosyl)-5-iodouracil. Proc Natl Acad Sci U S A 2005;102:1145– J, Weibel S, Hill PJ, Oelschlaeger TA, Goebel W, Szalay AA. Tumor-specific colonization, tissue distribution, and gene induction by probiotic Escherichia coli Nissle 1917 in live mice. Int J Med Microbiol 2007;297:51– JF, Gill VJ, Hwu P, et al. Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J Clin Oncol 2002;20:142– W, Fang H. Clinical trials with oncolytic adenovirus in China. Curr Cancer Drug Targets 2007;7:141– M, Yang M, Li XM, et al. Tumor-targeting bacterial therapy with amino acid auxotrophs of GFP-expressing Salmonella typhimurium. Proc Natl Acad Sci U S A 2005;102:755– HJ, Boerman OC, Oyen WJ, Corstens FH. Imaging infection/inflammation in the new millennium. Eur J Nucl Med 2001;28:241– MM, Shahinian A, Park R, Tohme M, Fissekis JD, Conti PS. In vivo evaluation of 2′-deoxy-2′-[18F]fluoro-5-iodo-1-β-d-arabinofuranosyluracil ([18F]FIAU) and 2′-deoxy-2′-[18F]fluoro-5-ethyl-1-β-d-arabinofuranosyluracil ([18F]FEAU) as markers for suicide gene expression. Eur J Nucl Med Mol Imaging 2007;34:822– I, Doubrovin M, Vider J, et al. Molecular imaging of temporal dynamics and spatial heterogeneity of hypoxia-inducible factor-1 signal transduction activity in tumors in living mice. Cancer Res 2004;64:6101– JG, Avril N, Oku T, et al. Imaging herpes virus thymidine kinase gene transfer and expression by positron emission tomography. Cancer Res 1998;58:4333– JG, Doubrovin M, Akhurst T, et al. Comparison of radiolabeled nucleoside probes (FIAU, FHBG, FHPG) for PET imaging of HSV1-tk gene expression. J Nucl Med 2002;43:1072– A, Voges J, Reszka R, et al. Positron-emission tomography of vector-mediated gene expression in gene therapy for gliomas. Lancet 2001;358:727– SA, Doubrovin M, Pike J, et al. Positron emission tomography (PET) imaging of tumor-localized Salmonella expressing HSV1-TK. Cancer Gene Ther 2005;12:101– KP, Joh D, Bellinger-Kawahara C, Hawkinson MJ, Purchio TF, Contag PR. Monitoring bioluminescent Staphylococcus aureus infections in living mice using a novel luxABCDE construct. Infect Immun 2000;68:3594– RB. Probiotic therapy of intestinal inflammation and infections. Curr Opin Gastroenterol 2005;21:44– A, Oswald S, Sonnenborn U, et al. The probiotic Escherichia coli strain Nissle 1917 interferes with invasion of human intestinal epithelial cells by different enteroinvasive bacterial pathogens. FEMS Immunol Med Microbiol 2004;40:223– J, Gunzer F, Westendorf AM, et al. Genomic peculiarity of coding sequences and metabolic potential of probiotic Escherichia coli strain Nissle 1917 inferred from raw genome data. J Biotechnol 2005;117:147– G, Marre R, Hacker J. Properties of Escherichia coli strains of serotype O6. Infection 1995;23:234– AR, Rutgers V, Hospers GA, Mulder NH, Vaalburg W, de Vries EF. 18F-FEAU as a radiotracer for herpes simplex virus thymidine kinase gene expression: in vitro comparison with other PET tracers. Nucl Med Commun 2006;27:25– JJ, Tjuvajev J, Johnson P, et al. Positron emission tomography imaging for herpes virus infection: implications for oncolytic viral treatments of cancer. Nat Med 2001;7:859– SS, Gambhir SS. PET imaging of herpes simplex virus type 1 thymidine kinase (HSV1-tk) or mutant HSV1-39tk reporter gene expression in mice and humans using [18F]FHBG. Nat Protoc 2006;1:3069– SS, Couto MA, Chen CC, et al. Preclinical safety evaluation of 18F-FHBG: a PET reporter probe for imaging herpes simplex virus type 1 thymidine kinase (HSV1-tk) or mutant HSV1-39tk's expression. J Nucl Med 2006;47:706– I, Mazzolini G, Boán JF, et al. Positron emission tomography imaging of adenoviral-mediated transgene expression in liver cancer patients. Gastroenterology 2005;128:1787–95. American Association for Cancer Research2008 Wild-type Escherichia coli Nissle 1917 (EcN) was purchased from Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ, Braunschweig, Germany), and competent E. coli DH5α cells were used to construct the plasmids.Approval Year Name Type Language ESCHERICHIA COLI STRAIN NISSLE 1917 Source: Common Name English MUTAFLOR Source: Common Name English E. COLI NISSLE 1917 Source: Common Name English ESCHERICHIA COLI NISSLE 1917 Source: Common Name English DSM-6601 Source: Code English ESCHERICHIA COLI STRAIN NISSLE 1917 WHOLE Source: Common Name English Code System Code Type Description EVMPD Source: SUB76233 Created by admin on Sun Jun 27 00:47:46 UTC 2021 , Edited by admin on Sun Jun 27 00:47:46 UTC 2021 PRIMARY SUBSTANCE RECORD